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Every effort is made by the NACA to insure that its published
trsmslations are accurate reproductions of the original work of the
authors. Papers are selected for translation on the basis of interest
and probable usefulness and, although an examination is made for
technical soundness, the Committee cemnot assume responsibility for
the accuracy of the detailed results presented by the author in the
original paper. The Committee will of course call attention to sm.y
errors observed at the time of publication or subsequent thereto.

Analysis of NACA Technical Memorandum No. 1150 has disclosed
“thatthe principal result of the original paper is in error. The
compatibility of the three branches of a k-shock (Y-shock,branch-
shock, fork-shock) in a supersonic flow is granted at crossing points
of two supersonic arcs corresponding to two opposite families of
characteristicsand one cormnonsubsonic arc ending at the sonic line.
The further continuation is sometimes rather the characteristic of
the same family than the supersonic arc of the shock polar itself
corresponding to the opposite family. Such cases with characteristics
are not considered by Eggink. Therefore, his classification of L-shocks
and the sensational result that X-shocks cemnot exist below Mach
number 1.245 is without any value. Obviously A-shocks are possible at
all supersonic velocities and their appearance is without any special
physical significance.
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1, By Eg@nk

,3uMMmY””

It is known that compression shocks which lead from supersonic to
subsonic velocity cause tie flow to
Wasl . Such shocks appear at,bodies
profiles on locally exceeding sonic
with too high a back pressure, The
observed therein is investigated.

separate on impact on a-rigid
with circular symmetry or wing
velocity, and in Laval nozzles
form of the compression shocks

I. INT-ROTXJC!JTON

The present investigation of the forms of
schlieren ol)swrva.tionsof win~ profiles and an

shock proceeded from
investigation of the

forms of shock in Laval nozzl;s”’withtoo high a back-p;essure.
Sc’hlierenplmto~raphs of the shock forms in Laval nozzles have
been published already inFB 1756,

In observing shock it is necessary to be sure to have a
suftable adjustment of the schlieren optical system. Good
definition of the shock form can be obtained with the schlieren
edge perpendicular to the flow, and bright shock lines against
a darlcfield. Small tunnel breadth yields sharp shock lines,
while the shock is no longer perfectly plane and appears streaked.
The observation is often disturbed by violent fluttering of the
shock. Then the shock ap~ears to the eye as a broad streaked band
end in photographs, as a set of shocklines. (Compare fig. 3.)

M
%% @)berVerdichtungsst&se bei abgel~ster $trblmung,”Zentnxil-e

fiirwissenscha~tliches-Berichtswesender Luftfahrtfor;chung des
Generallrd%zeugmeisters (ZWB) Rerlin+kilershof, I’orschungebericht
Nr. 1850, Aachen, Aug. W, 1943.
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11. THE ASSORTED SHOCK FORMS

~t will be assum6d that there is a compression shock in a
supersonic flow. If this shock encounters a ri:id wall, there
are t~Lrf?~ oases to distinguish. (See figs. l(a)to l(c).)

(a) The s~.cmkruns perpendicular to the wall; the flow does
not secarate,

(b) TM shock runs oblique to the wall; the flow separates
from the %-all.

(c) The shock branches :Yito +XCI separated shocks in front
0? t3.ewall.

In case (t) the flow generally returns to the wall after flo-wing
>ast the dead s?ace,-since the wessure ~radieat directed against
the wall downstream from.tht ben.-hshock foroes the streamlines
against the wall. ~rmn -the obss.rvationthat the flew behind the
sb+cckis along the wall agaiil:it cannct he inferred, therefore,
wkethe? case (a) cm (b) is present. (Cow-’.lref:.g.2.)

In contrast to case (t), which is cbserved shortly after
exceeding sonic velocity, the ‘marichof (c) (fig. ~) is firs-t
obse~~ed at hj~hcr Mach numb~rs. In agreement with this, it follows..
from tho theory of’the branching in Section 111, that a branching
first comes’into existence for

or

M= :> 1.245

The schlieren ots.ervationsof the branch show, that the
rmin.cipalshock A-!)is bent, in gsm?ral, c.ndthe branch shock
lines A-B and A+. cm be regarded as practically straight. By
this the str~>,~~L Fmundsry B-C is tal;enas straight and the pressure
is assumed cons+xnt in the dead space along this bouridai~.
(If the flow is already detach~d weakly upstream by considerable.
rcmglmess of the wall, then a fan of shock lines, which come
together in the principal shock forms in ulace of the braiich.)
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The flo~ in ‘the vicinity of the branch point is comrmte@ in
Section III. .Thi’sgives .asa.rqsult the shocks coming”together
at the branch point A and, with that, the shoe-klines”A.B and A-C””
as functions of’the flow and the diversion of the flow in the
separation point B or the pressure in the lead spaoe,

111, THEORY OF BRANCHING

1. $tater,ent and Execution of the Solution

The iildividualcompression shocks coming togethex in the
point .A are shown in the familiar shock-polar diagram of
A. Busernann. The s“treamllne A-E, which passes through the
branch point, separates the two flows (3) and (/4)(fig. ~)
behind the shock.”

The press.me P in (3) and (]~)must be equal along this
boundary, and the directions of the velocities in (~) and (4)
be pcrallel to it. The different increase of entropy from
(1) to (.!$)and (1) to (3) yields a discontinuity in the velocity,
temperature, and density across the boundary.

The flow (1) corresponds to the shock pole MI* in the polar
diagram (fig. 4) on which (2) and (.!L)lie. (3) lies on the shock
pole y *

“2 whioh was defined by means cf (2), which is variable.

The conditions required at the se?xirationline:

$2+$3=$4 , (1)

suffice to sscertain the points (3) and (~) for each M2* or $2.

In the dimensionless formulas for the compression shock the
~ressure p is re?erre to”the static pressure of the flow,

( )
‘Thecrobked shoclcA-B from(l) to (2)

‘o ~ “_p::s:u:.U::_-::.....-’....... ..._...-_–_..::-,-_--_-.-...__:----
““”--”“;% can be seen in the Techn. %richten Bd,.10 (1943).
Heft 2, I&of, A.’Weise DVL likewiseworked with branch shocks
and computed the special case of branching with a straight
principal shock,

, ,,,,,..,,,, ,.,. ........ . , ,.,.,,,,,, . ,. ..,,—.,,— ,. .. . .. . .-.—- ————
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reduces the static pressure to $.. On the shock polar “M2* the
pressure is therefore to be referred to $.. The abbreviation x
is used for the ?ressure ratio of the flow that characterizes the
shock polar, the abhreviati”on. y for the pressure ratio along
the shock polar, and indicate withthe pressure ratio referred
to po. According to figure 4.;

P1 Pa
—= xl —= X2’
Po

A
Po

I?2,. %— ‘Y2 —= Y#
PO %

p4
—= Y4
PO

Equation (1) is referred to PO yields:

4
PO
--=Y4w p.

“$2 +$3= $4 (2)

A
Po

The ratio of the static pressures Y is known to be a function

The forr,ulasfoiof y2 and xc ~
assumed as known.

The angle of deflection $
of y and :x from8

Y(j
the compression shocks are

of ‘theflow follows as a function

..—— —...... ,.——C — ..-. .-—. -.. -.— ~.— . . ..— -------- — — . . .. —---— -— -----------

.2For firther detail coac~rrm-i~ the fundamental equations,of
the compression shock and the formulas derived therefrom, see:

‘~ Springer 19&.!!T]leorete Einf~~ung in die Gasd.ynamik~R. Sa~uer -
The designations chosen there have bssn ret~ined here.
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I
~.,,.,4,, ~ k k+l

-x-. Y,,~2-1 = k..:- 1
tan .;!

]/” k-1

!/
k+~X+y

\
. . . A

Po
and thy static-pressureratio — as a function

‘1 and y2 from:s Po

,.

Y -x.

2k i! k+l

=x k-l
~~ ‘)

-- x-y

“(3) /

of the flow

(4)

if equation (~) is setup with the same indices as in equation (2):

,,..

and with the use of equation (4}:

Y4
as “e~x a? Y3’ .= — from equation (2).

@Y2)

,......... ..-YT ..—..——.—— --—. ——T-— _______ .__.,.____—..,

3Eliminating the shock,angle o from equations (1~) and (130)
‘“onpage 65 of’ ‘tTheoret.Einfuhrung id. Gasdynamik,ll leads to
equatfon (5); correspondingly,equation (.!4)is obtained”from
equation (l@) page ~ and equation (150) page 77.

—-—-,,,.,-. ,,,-- .,,,., .,,, ,. , , ,, . ,,, ,..,,.,.,, ,,---—-—---,,-, . , ....,,



6 NACA TM No. 11X

72 Y~
dq,YIJ = f(xl>Y2) + f — —

Q(X1,Y2)’ Q(X1,Y2)

it is seen that the unknown” y4.. cannot”’be computed e@tcitly

as a result of the complicated function f,

The solution of equation (2,) is obtained gra@icaJ-ly. The
following construction is suitable”to this end (fig. 5)C The f’
distribution of the shock polar Ml+ (= K* -distribution)

a = f(xljy) from equation (3) is plotted against the pressure

ratio y. The ~ distribution of the shock po~~r K*
3?0

(=~*- distribution) is plotted against y ~ displaced

parallelwise by ’92“
The exaggeration of the y-axis by the

$0
factor ~ refers the, p,ressure of ,tl~e shock polar M2* to PO. :

,, 9
With that: the starting point X2’, since x f -2= y2

2 p.
at the

point ~~2, coincides “with y> of the Ml% - distribut~on. The
. .—.

points of intersection of the ‘twodistributions furnish the desired
solution, since the conditions of equations (2) are satisfied here

wfth 82 + 19 = 8
$0

3 4 and Y3f ~ = yko

In carrying out the construction, the $, distributions were
computed for Ml%- = 1.1; 1.2; . “c . 2.2; 2.3”sILd fo* M2* at my

instant the smaller value was chosen, for example, for MI* = 2.0,

Mm+ = 1.9; 1.8; . . . For MI* there are intervals in which the
c.
solution shows various relations. The boundary values for these
~telw~s as well as the “limiting points” mentioned in the
following are treated in the next section.

The manner in which the various solutions in the individual
intervals are accounted for in terms of relation of intersection
points is schematically illustrated in Section 6-8.

If 1.191 ZM1* ~1 then the M2+$- distribution lies ‘nthe

interior of the Ml% - distribution (fig” 6)* A brmching ‘f ‘he

shock does not take place in this region, therefore.

-The interval 1.842 >M1* > 1.191 provides a potnt of intersection

(fig. 7) ● At the starting point xl the. %* - distribution

coincides with the Ml* - distribution. The M2* - distribution
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1:--W.-.
\ dlaplaaed from xl with respect to the ,M1*. - distri?ytlon W a
/1: differenti~ shows the “limiting point” a. The point of inte.&

‘i :
section moves out from a with diminishing M2* along the .

p MI* -- distribution up to the limiting point b. On the vart.able
1. %* . distrtbutions$, the intersection point approaches the starting
~
, potnt y2 of’ the %* - distribution, in doing so. At the limiti~

~
point b, the intersection point. cotncides with the starting.poin%
of the ~% - distribution. Here M2* reaches a lower limit below

/ ‘ w?d.chthere is no solutlon, shoe the M2* - distribution lies with~
$.,
!: the Ml* -1. distribution for mnaller’values of M2*.
,,
, If Ml*> 1.842, there are two points of intersection, which

run out from the lj.miting points a and c (fig. 8). At the
limiting point a, the variation of the one intersection point
known from the preceding interval commences, an~ terminates at the
limiting point b. The second intersection point starts out at

the limiting point c ami cqincides at the limiting point d
with the starting point of the’ appropriate M2* - distribution and,

thereby, terminates the enhiguitY. Near a lower limit for %*,

below which there is no longer a solution (M.mitingpoint b)
,, there is a lower limit at which the amblgufty vanishes (limiting\

point d).

1

I
,, ‘2. Obtaining the Limiting

d
/;j’ At the intersection point

Values Limiting Points a and

of the MI* - distributio~ and
P.

by Ax, ~~ =f(xl+dx) —Yt
Po

and A
n -1

to figure 9:
.-
P.

“g=
Y = Yg

1 l,,f(x~+ AX) QYE? -f(xpYg)
ltm Po - UIIIg_.
bx-+o @x = Ax-+o
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and right side goes to tan ~1 in the transition at the limit;
..acmrdingto figure.$);.this is the direction of the Ml* -
distribution at x~. ~ ‘

It is:
,, ,. ,4 ,,,

.
Y = xi

tb left side goes over the”partial ~lerivativqof f with respect
,., ;\

to x at x= xl since ~~’1 for Ax49. It follows that
r~ ,,

(5)

The quantitqy Yg which defines the limitin~ points a and c is
oomputmd from.equation (~). Differentiation of equation (3) yields:

i--—— . .... ——

tan $1 =

‘1

(6)
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, ,, and .,. ,.,,
.
‘J.

4
..~-..

“hi ‘“’”““
kf? -,1 ‘1 -Z=ixl

.

1.-
2 k k+l—xl -—

k-l k-l
xl

.-

i
k-l
k+l

.
,/ ‘“

)
-—i

-1. .
—.X1 Yg-l !2fYg+k+l ‘ :

(, : 1
~
!-..,

,

in which @ is to be t~ken from equation (3) with x = xl and

Y=Ygi

The quantity yg,defining the limiting points a and c
can be obtained only by aprmoximation from equaticns (5), (6),
and (7),

(7)

According
the MI* - and

. . ..

Limiting Points b and d

to figures
the M2* -

(7) and (8) th$ ,’intersection point of
distribution falls on the limiting
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points b or d at the starting point of the
Here, therefore, both curves have two points in
they have a common tarqgen.t, or the direction of
distribution = tan a2 at the.
of the jV2*- dtstributicm at

tan

Tnc direction at the starting

point y2, agrees

N.ACA~~Os 1150

M2* - distribution,
common, that is,
the MI* - ~
with the direction

the starting point E tan /32.
.. . . . .

.....

aa =tan pa (8)

point of the M2* . distribution
follows from differentiation-ofequation (3).” (Compare f3CpatiOn

,,
.,..,,

‘-”--—-”--—””“—”-”-k:i-”--“/.—

i

—.- —..

1 ‘k-l
——

‘20/??0
2k

y’2-(i’”+-l)x2’k,..,
(

&~’\k+l”----

‘2‘2k” V-xa’ ‘)

.,.

I> the d~ncmin.atorthe exagg,eratio~of the y-axis by the

~’o
‘a$~:’r ::’ mentioned abovefor the lJ@*- distribution, must..
be taken Into coflsideration. If

,.

n-2 P2 .1 1
‘2t ‘,q—= —-= Y2 .y—

Po Po/PoPo”.popo ,, ,
{. . .

( 6).)
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.-+-.= —---—-= ----—,
,, - “---=.=

:

$’0
and —

P.
from equation (4) are substituted,it follows after calculation:. z

k-1
I

2k/k - 1 Y2

.!’ /

(
i.k,-l ) k-1

(

)
k+l

xl — ‘1 + jrz -— .
‘~+—~y2 ‘2+xlk -

““k+ 1

“Differentiationof equation (3) gives the directionof the Ml*~-
point y =’y2 with $ from equ.ation(3) as:

1
I

1
tan a2 = ~,sin2ti

1

1 2k E k+l
— xl -—xl.yz
k-l k-1

- ——

+
1

——

Y2 - XJ

1

distributionat the

1

1
2

( )

4 Xli-,k-lxl-yp-—
~2-~ lc+l -

w
I G,, 0

(9)’

.

(lo)

1
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quantity y2 sought for is obtained only as an
from equations (8), (9), and (10).

The Interval Limits

Figures 10 to 12 show the variation of the curves tan a2
and tan $2 with yl for fixed MI*, in the various intervals,
The intersection points of ‘bothcurves furnish the y2 - values
of the limiting points b and d,

Both intersection points approach the starting point xl of
both curves mth diminishing NI*. First of all, d, coincides
with xl; because of this ambiguity vanishes.,since only the
limiting point b still exists. The variation in c“urveof
figure 10 goes over to the variation of the curve irifigure 11.
Then b coincides with xl and the variation of the curve
corresponds to figure 12. The vanishing of the limiting point b
is only possible, however, if the M2* - distribution lies within
the M1* - distribution. Her,ethe lower limit for MI* is reached,
accordingly, below which there is no solution, The..curves tan a2
and tan ~2 agree at the point y = xl in magnitude and direction,
that is:

tan a2 = tan &32 ( 11)

btan a2 d tan p2= —- (12)
by ?y

The somewhat detailed proof of these tie~ationsby equating and
differentiatingequations (9) and (“1.0)~S passed over here.

Since the directions of both curves at the point xl agree,
the coincidence of the intersection points b and d with XI
means that the curvatureof both curves agree at the point xl●

Therefore,with equation (12) the two second derivatives of both
curves are equal.

-.\
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b2 tan ap b2 tan ~2
—= — (13)

~ ~2 bY2-..., .- _. . .,. .

The interval lim”itssought for follow from equation (13)-

Taking the iy~rti”aJ.derivative of equations [!3)and (1,0)
and mibctituting in equation (3.3)leads after a detailed calculation,
which will not ~e ent~red into ‘here,to ‘analCebrai.c
the fourth degree in xl. By nxeansof the solu.ions

and ‘lb = 1, these reduce to the following equation

se.ccmddegre~:

equation of :

‘la”s 1
of the

with,the solution:

or with.:
k-1

solved for 1111*1
.. ..

‘.’

, ~1*2=(,+v(lq/-~)’,.. .
This gives: The lower limit for the ambiguity lies at

%* = 1..842

‘or h!l ‘2.568; the limit, below which there is no solution, lies
at ~1*= 1~191 or ‘jfll~ 1.2/Jj.

——
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.. . ... ..,.

3* Plotting the Polar-Shook Diagram
\

The result’of the construction’ and” calculation isdj.sp,layed
in the polar-skock diagrem (see appendix).,. .
, ~5 .“”IS given, with calculated”.val~e for y~i gccording to

figure 5 and’thd.qoin’k”’(~”)according to figure & The points (~) are”
computed for the flow’ 1!* at any given instant m% plotted

iOn the variable-shock pa ars M2”*,and joined (fig. 13) bya
~~urvee The curves begin at the shock polar Ml*, at the limiting
pcint a or c a~ldend on the a~js of’~r@ (jii~~r~ at M* that .
corresponds to the limiting points b and d, In the shock-
pol.ardiagram th,enoint (.4)or $~ (fig. h), fcr Riven point (3)
or & is defined from equai:’iori(“2):“j #

..
>

.?
= ,$.‘4 2 ‘$3

Vfhetllwr (4) lies on the supersonic or the subsonic side of the
shock-polar follows fromithe variation of additional poir-ts- The
lower lim.i.tingline fbr L!!2*,below which there is no branching,
is the connecting,line o.fthe iimiting”points b (curye b).
The lower limiting‘~.in&for the ambiguity is the correcting of
the lir(,itin~points d (curve d).

The values of M2* for which
the shock A-D becomos straight,

~= C, therefore, for which
are determined from the inter-.....

secticm point of the curve e marked with little lines with the
shockpolar jJ1** If e coincides w:th the starting ?oint of’the
shock polm, then the limiting ~oint a must lie on thq axis of’
.thc diagram, sinc~.the limiting point a corresponds ‘cothe
“solution” at the starting point of the shock-volar and $~= O.
This conditicn used in equation (5), (6), and (7) yields: “

.— —..—

/2 * ~ik /k+l@
x~=—

\)
or =

k+l, I
—[ - (=)~~=‘k-l

..

1.353

,,

as the intersection pcint of the curve e ~riththe a~is of the .
“diaglrnfim.(It is ICIIOWthat the maximum”of~~the pressure for this
value is behind .%straight sh~ck.)

In figme 14 the branching with straight urincipal shock is
shown for various M *, in figure 15 the branching with fixed
Ml* = 1,5 and 02 “$ari&,ble ,
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IV, SUMMARY

Schlie”renobservations show a branching of the compression
shock 5.n the vicinity of a fixed wall~ The flow in the vicinity
of the hranohing noint is computed, and the result displayed in
a shook-polar diagram,

A branching of the shock only anpears for M~*> 1.191
(MI > 1.245). If MI* >1.@.@ (Ml:> 2.5L6), then two solutims
exi st. If MI* lies ‘between 1,191 and 1.353 the Principal
shock is oblique, the branching deflects the flow direction
po~itively, orilyfor MI*> 1.353 (Ml > 1.484) the flow direction
‘isdeflected both Positively and negatively. ~bre a branching with
a straig,h.t]trfnci?alshock becomes possible. The second solution
for MI* > 1.8)42 yields only a positive deflection of the
flo~wdir(~ctiono

Translated by Dave I%ingold
National Advisory
Committt+efor Aeronautics

●
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Fig. 1
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a
b c

Figure 1. a-c The different shock forms.
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Figure 2. Shock form in a Laval nozzle.

Figure 3a. At a wing profile
(taken by Ackered)

Figure 3b.

Figure 3c. In a Laval nozzle.

Figure 3. Branched shocks .
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Figs. 4,5.

\

D
I

@A
a3

B
‘.

Figure 4. Flow field and shock-polar diagram.

IYZ*-‘iStrlbuAtion
/ &f(x;#,Y’”#

)\ ~--—-. =
6

___________—___——_
4

1 -.$=
t

‘~ +*4 //I

~j’zr’ib”’i”n
Figure 5. Construction of the solution.
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Figure 7.

Figure 8.

Figures 6-8 The position of the intersection points in the intervals.
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m. .,..,.

t

Figure 9. Determination of the limiting points a and c.
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Figures10-12Determinationcf intervallimits.
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Figure 13. Plotting in the shock-polardiagram.

i!

“%
$’



.

*-–l–––– ---1--

iv: ~J8 ~40 145 ~so ( 6D ~70

l!lz=-~ (8° 2870 q4 “ Ts” 7$5° 74,8°

/Y: 1,350 f349 -r)345 (350 ~378 ~42f
$

0, 74? Q745 0,765 @788 ~848 (?921

/Y:
~

Q 725 4775 0,690 ~ 666 D,625 4588
2
z

Figure14. Branchingwith straightprincipalshock. .0
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Figure15.Exampleofa branching,with fixedflow.



Appended chart: Polar-shock diagram for branched shocks.
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